
ava i lab le a t www.sc iencedi rec t .com

journa l homepage : www.e lsev ie r . com/ loca te /d i in

d i g i t a l i n v e s t i g a t i o n 3 S (2 0 0 6) S 5 0 – S 5 8
XIRAF – XML-based indexing and querying for digital
forensics

W. Alinka,*, R.A.F. Bhoedjanga, P.A. Bonczb, A.P. de Vriesb

aNetherlands Forensic Institute (NFI), Laan van Ypenburg 6, The Hague, The Netherlands
bCentrum voor Wiskunde en Informatica (CWI), Amsterdam, The Netherlands

Keywords:

XIRAF

Forensic digital investigation

XML database

Tool-integration

XQuery

Standoff annotation

a b s t r a c t

This paper describes a novel, XML-based approach towards managing and querying foren-

sic traces extracted from digital evidence. This approach has been implemented in XIRAF,

a prototype system for forensic analysis. XIRAF systematically applies forensic analysis

tools to evidence files (e.g., hard disk images). Each tool produces structured XML annota-

tions that can refer to regions (byte ranges) in an evidence file. XIRAF stores such annota-

tions in an XML database, which allows us to query the annotations using a single, powerful

query language (XQuery). XIRAF provides the forensic investigator with a rich query envi-

ronment in which browsing, searching, and predefined query templates are all expressed

in terms of XML database queries.

ª 2006 DFRWS. Published by Elsevier Ltd. All rights reserved.
1. Introduction

A typical digital forensic investigation involves these four

phases:

1. media capture (e.g., forensic disk duplication);

2. feature extraction (e.g., parsing file systems, mailboxes,

chat logs, etc.);

3. analysis (browsing, querying, correlating);

4. reporting (writing down findings for court).

This paper addresses two key problems that occur in the

feature extraction and analysis phases of a computer system

investigation. First, the amount of data to process in a typical

investigation is huge. Modern computer systems are routinely

equipped with hundreds of gigabytes of storage and a large

investigation will often involve multiple systems, so the

amount of data to process can run into terabytes. The amount

of time available for processing this data is often limited

(e.g., because of legal limitations). Also, the probability that

a forensic investigator will miss important traces increases
every day, because there are simply too many objects to

keep track of.

Second, the diversity of the data present on a typical hard

disk is overwhelming. A disk image contains a plethora of pro-

grams and file formats. This complicates processing and anal-

ysis and has led to a large number of special-purpose forensic

analysis tools (browser history analyzers, file carvers, file-sys-

tem analyzers, etc.). While it is clear that the output of differ-

ent tools can and should be combined in meaningful ways, it

is difficult today to obtain an integrated view on the output of

different tools. And again, it is quite unlikely that a forensic in-

vestigator has both the time and the knowledge to apply all

appropriate tools to the evidence at hand.

Our approach to solving these problems involves these key

elements:

� a clean separation between feature extraction and analysis;

� a single, XML-based output format for forensic analysis

tools;

� the use of XML database technology for storing and querying

the XML output of analysis tools.
* Corresponding author.
E-mail address: wouter@holmes.nl (W. Alink).

1742-2876/$ – see front matter ª 2006 DFRWS. Published by Elsevier Ltd. All rights reserved.
doi:10.1016/j.diin.2006.06.016

mailto:wouter@holmes.nl
http://www.elsevier.com/locate/diin

d i g i t a l i n v e s t i g a t i o n 3 S (2 0 0 6) S 5 0 – S 5 8 S51
Feature extraction and analysis are often interleaved and

are sometimes seen as a single step. By separating feature ex-

traction from analysis, we can, to a large extent, automate the

feature extraction phase. This is essential for dealing with the

ever-increasing amounts of input data. The use of XML as an

intermediate format allows us to manage the heterogeneity

of both the input data and of forensic feature extraction tools.

Different tools with a similar function can be wrapped so that

they produce similarly structured (XML) output. That output

can then be processed by a single analysis tool that no longer

has to deal with the idiosyncrasies of various input formats.

Finally, by storing the XML annotations in a database system,

we obtain all the benefits of declarative, general-purpose

query languages.

To test this approach, we have implemented a prototype

system called XIRAF (an XML Information Retrieval Approach

to digital Forensics). XIRAF automatically extracts features

from disk images and stores those features in a high-perfor-

mance XML database system. The XML database and the

disk-image data that is referenced by the XML annotations

can be accessed through XQuery (Boag et al.), an XML query

language. Since we do not expect all forensic analysts to be

XQuery experts, we provide, through a web interface, a num-

ber of predefined query templates and standard analysis (e.g.,

a timeline).

The remainder of the paper is structured as follows.

Section 2 discusses related work. Section 3 gives an architec-

tural overview of XIRAF. Section 4 describes application areas

in which XIRAF can be useful. Section 5 gives an overview of

our initial experiences with the prototype. Finally, Section 6

presents our conclusions and our plans for future work on

XIRAF.

2. Related work

Our work on XIRAF is related to several other fields and efforts.

First, and perhaps foremost, we are aware of several ongoing

projects in the law enforcement community that aim to auto-

mate feature extraction for large evidence sets. The need for

such automation has been expressed by various authors

(Buchholz and Spafford, 2004; Carrier and Spafford, 2003;

Mohay et al., 2003; Sheldon, 2005). Unfortunately, very little

is published about these projects. One such project is the

Computer Forensic Investigative Toolkit (CFIT) (Mohay et al.,
2003), a system developed by Australia’s Defence and Science

Technology Organization. To the best of our knowledge, CFIT

focuses on automatic feature extraction and data visualiza-

tion rather than the querying of extracted features.

XIRAF builds on recent advances in information retrieval

and on XML-based information retrieval in particular. XML da-

tabase systems are relatively new and large forensic data sets

pose significant challenges to them.

Mainstream commercial toolkits such as Encase and FTK

provide a user-friendly interface to a built-in set of forensic

analysis tools. EnCase also provides its own scripting lan-

guage, but no API that allows one to plug in existing, external

tools written in a common programming language. XIRAF dif-

fers principally from these tools by its use of a query-able, in-

termediate data store that isolates feature extraction from

analysis. As we will argue in this paper, this offers important

benefits.

3. XIRAF

The XIRAF framework consists of three components (see

Fig. 1). The tool repository houses a collection of feature extrac-

tion tools. The feature extraction manager orchestrates the invo-

cation of these tools, merges their XML outputs, and stores the

result in the storage subsystem. The storage subsystem consists

of binary large objects that hold raw evidence data and an XML

database that holds all extracted features.

3.1. The feature extraction manager

From XIRAF’s perspective, an investigation starts when one or

more raw digital evidence items, usually disk images, are fed to

the system. Initially nothing is known about the content of

these evidence items. The content is simply a single piece of bi-

nary data that we will refer to as a Binary Large OBject (BLOB).

The feature extraction manager is responsible for extract-

ing from the input BLOBs as many useful features as possible.

It does this by running tools from the tool repository in the

correct order and by applying them to the correct inputs. It

also tracks which objects have already been annotated by

other tools and prevents duplicate annotations.

It is the tasks of individual tools to extract specific features

from the BLOBs. A tool will normally operate on one or more

byte ranges in the current BLOB set. Such a byte range is called
Fig. 1 – XIRAF framework architecture.

d i g i t a l i n v e s t i g a t i o n 3 S (2 0 0 6) S 5 0 – S 5 8S52
Fig. 2 – Feature extraction example.
a region. A tool extracts features from regions and outputs the

extracted data in the form of an XML fragment. An XML frag-

ment produced by a tool may contain references to regions.

Since a tool’s XML output refers back to the BLOB, a tool is

also said to annotate (parts of) a BLOB. The combination of

XML and BLOB is in database literature often referred to as

standoff annotation (Thompson and McKelvie, 1997); the

XML describes/annotates the BLOB.

The feature extraction manager collects the XML frag-

ments produced by tools and integrates those fragments

into a single, large XML document, which is effectively

a tree. It will attach any newly derived annotations to their

parents in the current tree.

Annotations produced by one tool can be used as input for

other tools; this allows the feature extraction manager to cre-

ate an increasingly larger set of annotations. Fig. 2 illustrates

the process for a case in which three evidence files (A, B,

and C) are annotated. In step 1, the feature extraction man-

ager adds volume information to the initial tree by running

a volume detection tool. Next, in step 2, XIRAF runs file-

system parsers that operate on the file-system volumes

discovered during step 1. In subsequent steps XIRAF will run

more specific tools such as document analyzers, registry

analyzers, unallocated cluster carvers, etc.

For robustness, the feature extraction manager runs each

tool in separate processes so that a tool crash will not result

in a framework crash. The output of malperforming tools is

discarded to avoid corrupted data.
3.2. The Tool Repository

The Tool Repository is a set of feature extraction tools. A tool

consists of some extraction program and a wrapper. A program

is wrapped by creating a tool-executable wrapper and a tool input

descriptor. The tool-executable wrapper describes how to in-

voke the tool and converts the tool’s output to XML (see

Fig. 3). We assume that many existing forensic programs can

be made to produce XML by wrapping them. While this is gen-

erally true for command-line programs, it is obviously much

more difficult to wrap GUI-based programs.

The tool input descriptor is an XQuery expression that se-

lects input for the tool. Specifically, the query selects existing

XML fragments from the global, case-wide annotation tree.

Input descriptors are restricted to selecting XML nodes that re-

fer to a region in one of the BLOBs. When invoking a tool, the

feature extraction manager executes the input descriptor

query. Next, it passes both the resulting XML fragment and

the associated BLOB data (or references to this data) to the

tool. Table 1 lists several example tools. For each tool, we give

its input descriptor query.

XIRAF distinguishes two types of tools: extraction tools and

BLOB-extending tools. Extraction tools read data from a region,

interpret it, and produce XML that says something about

(parts of) that region. This type of tool is suitable for extracting

modest amounts of information from regions. A good exam-

ple of such a tool is a log parser. All tools listed in Table 1

are extraction tools.
Fig. 3 – XIRAF tool wrapping.

d i g i t a l i n v e s t i g a t i o n 3 S (2 0 0 6) S 5 0 – S 5 8 S53
BLOB-extending tools produce not only XML but also raw

binary data. This new data is logically appended to the BLOB

from which the tool reads its input data. An example of

a BLOB-extending tool is a tool that decompresses compressed

files. Such a tool would logically append the uncompressed

data to a BLOB. In reality, XIRAF does not physically extend

BLOBs; the details of XIRAF’s virtual BLOB mechanism are de-

scribed in the next subsection.

The XML output generated by tools is almost completely

free-format: there is no predefined output schema. To obtain

an integrated view across the output of different tools, how-

ever, it is important that tools adhere to some conventions.

All XIRAF tools that extract timestamped information, for ex-

ample, produce the same XML tag (timestamp) to mark the

timestamp. This allows us to obtain a timeline that includes

information from multiple tools. Similarly, all file-system

parsers use a common set of tags in their XML output.

In their XML output, tools can incorporate region nodes. A

region node is an XML fragment that refers to a segment of

the input BLOB: a region. A region can denote various entities:

a file, a sentence, an e-mail message, or even an entire disk;

a tool is free to specify any region it can identify. The following

region nodes match the example given in Fig. 2. Notice how

they identify BLOB regions using the XML attributes start

and end.

Region nodes produced by one tool can be selected by the

input descriptors of other tools. XIRAF tracks the derivation

<case id="test-case">
<imageid="1"name="A"start="0"end="15000000"/>
<imageid="2"name="B"start="15000000" end="35000000"/>
<imageid="3"name="C"start="35000000" end="40000000"/>

</case>

<case id="test-case">
<imageid="1"name="A"start="0"end="15000000">
<volumetype="FAT32"start="0"end="10000000"/>
<volumetype="NTFS"start="10000000" end="15000000"/>

</image>
<imageid="2"name="B"start="15000000" end="35000000"/>
<imageid="3"name="C"start="35000000" end="40000000">
<volumetype="EXT2"start="35000000" end="40000000"/>

</image>
</case>
history of annotations by inserting extra nodes with adminis-

trative information into the annotation tree. This allows

XIRAF to show to users how a particular annotation was

obtained.

3.3. The storage subsystem

XIRAF’s storage subsystem stores and gives access to BLOBs

and to the XML tree that annotates those BLOBs.

BLOBs are managed by XIRAF’s BLOB manager, which gives

access to both the original BLOB input data (usually disk im-

ages) and to the logical BLOB extensions produced by tools.

A BLOB extension involves a data transformation (e.g., decom-

pression). Any necessary transformation information is pro-

vided by the tool that extends the BLOB. Instead of

physically extending a BLOB with new data, the virtual BLOB

manager stores this transformation and the input and output

address ranges involved in the transformation (see Fig. 7).

Both tools and queries require BLOB access. To provide

a transparent interface to these clients, a virtual BLOB server

has been created which can be asked to retrieve any region

from a logical BLOB. Such a request essentially consists of

a BLOB identifier, a start offset, and an end offset. The virtual

BLOB server forwards such requests to the BLOB manager

which will dynamically apply any transformations necessary

to (re)produce the data that has been requested.

This BLOB storage strategy – storing transformations

rather than data – allows us to keep storage requirements un-

der control. If necessary, the virtual BLOB server can be ex-

tended with a cache, but at present no data are cached.

The XML annotations are stored in MonetDB (Boncz et al.,

2006), a high-performance database system that provides sev-

eral front-ends, including an XQuery front-end. All queries in

our system are issued to this database system and are

expressed in an extended version of the XQuery (Boag et al.)

query language. XQuery is an expressive, general-purpose

query language in which XML data can be selected, sorted,

grouped, and joined. Figs. 4 and 5 show two example queries.
Table 1 – Input descriptor examples

Tool name Rifiuti

Description Lists recently deleted files by looking at the recycle bin log files (usually named ‘‘INFO2’’)

Input selection Selects all files named INFO2

Input query //file[@name[ends-with(.,‘‘/INFO2’’)]]

Tool name Registry Parser

Description Analyzes Windows configuration information, e.g., browser settings, installed services, and user details

Input selection Selects all files in directory /Windows/System32/config/ and all files named NTUSER.DAT

Input query //file[@name[starts-with(., ‘‘/Windows/System32/config/’’) || ends-with(., ‘‘NTUSER.DAT’’)]]

Tool name EXIF Extractor

Description Extracts metadata from images, e.g., a picture’s recording date and time and the type of camera used

Input selection Selects all files with mime-type ‘image’

Input query //file[mime[contains(.,‘‘image’’)]]

Tool name Carving Tool

Description Uses header/footer signatures to locate images, URLs, ZIP files, etc., in unallocated space

Input selection Selects any region node that has not been annotated by another tool

Input query //*[not(container)]

d i g i t a l i n v e s t i g a t i o n 3 S (2 0 0 6) S 5 0 – S 5 8S54
To integrate the XML with the BLOB data, we defined addi-

tional XQuery functions that link XML elements (region nodes)

to the corresponding data in a BLOB. These functions allow us

to include BLOB data in query results. Since most of the BLOB

access complexity resides in the BLOB manager, the imple-

mentation of these functions was relatively straightforward.

A more involved XQuery extension is used to relate regions

based on their BLOB positions. There are cases in which mul-

tiple tools extract data from the same objects. A URL scanner

and an e-mail analyzer, for example, could both annotate the

same files, but would extract different features from it. In pre-

vious work (Alink, 2005), we defined StandOff extensions

through which relationships between overlapping BLOB re-

gions can be expressed. With these extensions, one can, for

example, find an e-mail that contains a particular URL, even

though these entities were discovered by unrelated tools.

Fig. 6 illustrates one of these extensions, the select-narrow

operator. It selects only those regions that are contained (by

BLOB position) in the context region; in this case it selects

URLs inside the INDEX.DAT-files. While we consider the

StandOff extensions useful, most of our current queries do

not involve these extensions.

3.4. Implementation

Much of our feature extraction framework code consists of

Python and Bash shell scripts. The tool collection consists

of existing forensic tools, both publicly available tools and

tools that we developed in-house. The current collection

includes a volume analysis tool, parsers for various file-

systems (FAT, NTFS, etc.), parsers for various log files (e.g.,

Windows event log), a file-hashing tool, a link file analyzer,

a file carver, and more. Where necessary, these tools were

wrapped using scripts. As mentioned, we use MonetDB and

an extended version of XQuery for XML storage and access.

The BLOB manager and the virtual BLOB server are Python

programs (Fig. 7).

Users access XIRAF applications through a simple web

interface. The result of an XQuery can be XML data, which

in turn can be displayed and formatted in a browser using

let $d := doc("case.xml")
let $f := $d//folder[@name="My Documents"]
let $r := for $i in $f//file

where $i/mime="application/x-zip"
order by

$i/accessed/timestamp descending
return element "zipfile" {

$i/@name
}

return subsequence($r, 1, 20)

Fig. 5 – XQuery: return the names of the 20 most recently

used ZIP files located in any ‘‘My Documents’’ folder or sub-

dirs thereof.

for $i in doc("case.xml")//url
where contains($i,"google")
return $i

Fig. 4 – XQuery: returning all ‘Google’ URLs.
XSL style sheets. This is an easy way to quickly create a

front-end.

4. Forensic applications

Using XIRAF, we have implemented a number of small but

useful forensic applications. These applications have been

tested on several cases; the size of the disk images in these

cases ranged from 40 to 240 GB.

The applications cover a range of functions – browsing,

searching, and knowledge bases – and illustrate the versatility

of our query-based approach. Forensic investigators, however,

need not be familiar with the XQuery language; they access

the XIRAF applications through simple web interfaces.

4.1. Timeline browser

Browsing remains one of the principal ways in which forensic

examiners discover information. Mainstream forensic tools

such as EnCase and FTK focus on file-system browsing. While

this is one useful perspective, other perspectives are often

equally important and can help reduce the amount of data un-

der investigation. Examples of such perspectives include time

and users.

Using XIRAF, we have implemented a simple timeline

browser. Through a web interface, a forensic examiner can se-

lect a date/time range of interest. The start and end times are

then plugged into the following parameterized XQuery

template:

The resulting query selects all XML fragments that contain

a timestamp. Where a tool such as EnCase can display a time-

ordered view of file-system metadata, XIRAF shows all

timestamped information extracted from the input BLOBs by

different tools. This includes not only file-system metadata,

but also entries from chat logs, EXIF information from digital

for $i in doc("case.xml")//file
where ends-with($i/@name,"INDEX.DAT")
return element "file" {
 $i/@name,
 $i/select-narrow::url
}

Fig. 6 – XQuery: return all URL’s in IE history files

(INDEX.DAT).

let $d := doc("case.xml")

let $all :=

for $i in $d//timestamp

where $i/@unixtime <= %dateupper%

and $i/@unixtime >= %datelower%

order by $i/@unixtime

return $i

for $i in $all

return element "event" {

$i,

$i/ancestor::file/@name

}

}

d i g i t a l i n v e s t i g a t i o n 3 S (2 0 0 6) S 5 0 – S 5 8 S55
Fig. 7 – Example of a virtual BLOB layout.
pictures, etc. This way, an investigator obtains an integrated

view of the information produced by various extraction and

analysis tools. She could see, for example, that movie files

are created in the file system at approximately the same

time that suspects are discussing a transfer of those files using

a chat program. The results displayed by the timeline browser

also include links to the derivation history of result objects. By

clicking on such a link, the investigator would learn that

a chat log entry was extracted from a file (by a chat log parser)

that was extracted from a zip archive (by a zip parser), which

was discovered in an NTFS file system (by an NTFS parser) that

was found in a disk image (by a volume analyzer).

4.2. Photo search

The photo search application finds digital images that satisfy

certain conditions. Fig. 8 shows the query form that is pre-

sented to users. An investigator can select the camera model

that was used to record the image, the date/time on which

the recording took place, the resolution of the image, etc.

For brevity, we omit the underlying query template. The

query constructed from that template combines file-system

metadata and EXIF information extracted from digital images.

The query produces XML region nodes and some additional

metadata. The query result includes image previews which

are generated by requesting the relevant regions from the vir-

tual BLOB server.

4.3. Child pornography detection

XIRAF can be used to match case information against existing

knowledge bases. We define a knowledge base as structured, rel-

atively static information about a certain subject. A typical fo-

rensic example of a knowledge base is a database of hash

Fig. 8 – XIRAF photo query.
values of files that have been determined to contain child por-

nography (digital images or movies). Our child pornography

detection program uses XIRAF to match files present in

a case against a hash database that was compiled by the

Dutch police. (Other countries have similar databases.) The

hash database has been converted to XML and is preloaded

into XIRAF’s XML database. During the feature extraction

phase, the hash-tool will compute MD5 hash values of all files

discovered by file-system tools and other tools. Like all fea-

tures discovered by feature extraction tools, these hash values

are also stored in the XML database. By pressing a single but-

ton, an investigator can execute a query that matches these

hash values against values present in the hash database.

This results in an overview of known child-pornographic ma-

terial that is present in the case data.

This application matches all objects that have been

marked as a ‘file’ against the database. This also includes

‘files’ discovered by our carving tool, which searches for

known headers and footers in the unallocated space of a file

system. As a result, and in contrast with similar functions in

mainstream tools, the application therefore also discovers

child pornography in unallocated clusters. Moreover, this

requires no changes to the query that is used to execute the

database match.

5. Discussion

Although it is too early for a formal evaluation of the suitabil-

ity of XIRAF in forensic analysis, our early experiences so far

have confirmed the intuition that motivated this research,

but already highlight a number of issues to be addressed in

the next iteration of system design and experimentation.

5.1. Flexible and powerful querying

Examples of questions that pop-up in forensic investigation

include not only straightforward ones like ‘When was file X

last modified?’, but also high-level information needs of prose-

cutor or attorney, such as ‘Does this computer contain (traces of)

child pornography (CP)?’.

A strong point in our approach is that the XIRAF architec-

ture offers the opportunity to express the questions popping

up in the forensic investigation process as queries in the gen-

eral-purpose XQuery language. So, the forensic analysis is not

limited to a set of predefined investigation patterns. To illus-

trate the flexibility of this approach, consider a collection of

tools for the analysis of file-system information, the

d i g i t a l i n v e s t i g a t i o n 3 S (2 0 0 6) S 5 0 – S 5 8S56
computation of MD5 digests, the analysis of log files, carving,

and the extraction of EXIF metadata from images.

Assuming that we have represented the CP hash-sets in an

XML document called CP-hashset.xml, the high-level exam-

ple question for the existence of CP could then be formulated

as a query that checks for existence of files with an MD5

check-sum that exists in the CP database:

Additional queries may extend this collection based on the

occurrence of words or URLs that are frequently encountered

in CP cases. The resulting set of matching files will be used in

follow-up queries, for example, to provide a list of .exe files

not identified by the NIST hash database for additional

investigation.

In other words, the declarative nature of the query lan-

guage enables new ways of processing the data, on the fly,

as needed for the specific case at hand. By parameterizing

the previous CP query by the case’s filename (case.xml in

the example), the same pattern can be reused for different in-

vestigations – independent of how the files in the case have been

extracted! Keeping these queries for later reuse provides

a way to capture knowledge of the investigation process in

XIRAF. Essentially, this process extends the set of tools de-

fined in the feature extraction manager with new means to

analyze case data. At the moment of writing, the XIRAF proto-

type provides already the query patterns to produce timelines,

to identify traces of CP (an extension of the query given above),

to search photos, and the templates for re-occurring browsing

strategies and the collection of summary statistics.

Structural queries are surprisingly useful, even when com-

bining only two tools. For example, after a file-system tool and

an EXIF tool have been applied to the data, the investigator can

already create a timeline to display file-activity together with

events such as a photo being taken. Or, select files created (or

deleted) within two days from a photo being shot. Without

XIRAF, answering such questions always resulted in the

need to write a custom script, a time-consuming and error-

prone process.

Currently, the query facilities are limited to structural con-

straints, and very limited keyword matching. Given the activ-

ity in defining the XQuery-Fulltext standard however, we

expect that this shortcoming can be overcome in the near fu-

ture. Specifically, the XQuery engine used in our current

implementation has announced extensions that provide basic

information retrieval functionality.

5.2. Wrapping tools

A few aspects contribute to the ‘wrap-ability’ of tools:

� possibility to capture/represent the tool’s output;

� possibility to provide tool with correct input;

� amount of overhead introduced;

� the types of tools that can be wrapped (programming

interface);

� the amount of time it takes to wrap a tool;

for $i in doc("case.xml")//file

where some $j in doc("CP-hashset.xml")//md5

satisfies data($i/md5) = data($j)

return $i
� the behaviour of the system in case the tool produces bad

results.

The data model using XML to represent standoff annota-

tions of a (virtual) BLOB seems to provide a good way to over-

come many of the problems with treating binary data inside

XML files. Due to the uniform output format of tools, there is

no real need to conform to a certain programming interface.

As long as a tool accepts BLOB data and/or XML as input,

and returns XML (and, if needed, additional binary data) as

output, the tool can be easily wrapped, given that the tool

does have an interface beyond its GUI. XIRAF itself currently

provides C, Python, and command-line (bash/cygwin)

interfaces.

Our approach to feeding the tool the correct input is the use

of input descriptors. Although the results will be based on pre-

vious tools (which possibly produced wrong results), the

missed objects and the false-positive rate seem to be rather

low. We do acknowledge that more research should be per-

formed in this area. In particular, we think that knowledge ba-

ses could contribute significantly to improving the quality of

the tool input.

The amount of time it takes to wrap a tool depends on its

output format. If the tool is already able to produce output

in XML format, wrapping could be a matter of minutes, but

when the output format of the tool needs to be completely re-

written to become XML, or maybe even the output has to be

split into BLOB and XML, wrapping might become more diffi-

cult. On the positive side, more and more tools already have

an export-to-XML feature.

XIRAF runs its tools in separate processes, thereby avoid-

ing crashing itself whenever a tool crashes. The overhead

that this entails is worthwhile. We do not need to focus on

the quality of individual tools, and can concentrate on the sta-

bility of the feature extraction manager itself.

5.3. Performance aspects

An important aspect of forensic tools is the need to query

cases in interactive time. XIRAF’s runtime performance de-

pends on the size of the resulting XML document, and the ef-

ficiency of the database back-end.

5.3.1. Size of XML
In a case for demonstration purposes (2� 120 GB hd), the ex-

traction framework created a 130 MB XML document contain-

ing 2.2 million XML elements of which 86,000 are file-objects

(file-system objects and carved files). Other annotations in-

cluded over 460,000 identified date-objects. We expect that

the feature extraction framework will be able to extract

many more features as new tools are added. Many of the

new tools, however, will be file-specific, so the XML document

should only grow slowly from this point. Notice that the ob-

served ratio of 240 GB to 130 MB gives a compression factor

of roughly 1000.

Additional experiments have to point out if the current

performance figures will scale up when handling up to 10 TB

of binary data, which is our current target to better represent

the real-life forensic investigation.

d i g i t a l i n v e s t i g a t i o n 3 S (2 0 0 6) S 5 0 – S 5 8 S57
5.3.2. Extraction time
The amount of overhead introduced by the extraction phase

of XIRAF is currently rather high: about 3 min per tool invoca-

tion (depending on the size of the XML in the database). The

overhead can be attributed to two major cost factors.

A significant cost results from using an XQuery database

system that does not (yet) support updates. Consequently,

each tool updates the XML document by merging in its

modifications, incurring the cost of copying and parsing all

these data (at every tool invocation). Also this processing

strategy allows, only, to run tools sequentially. As the data-

base back-end has recently been extended with update func-

tionality, we expect to reduce this cost factor significantly:

by avoiding the repeated parsing and materialisation costs,

as well as allowing multiple (independent) tools to run in

parallel.

Another contributing factor is that we execute tools in sep-

arate processes. This design decision has been taken to shield

the extraction manager from failing tools, in practice out-

weighting the performance penalty incurred.

The following timings are indicative for typical extraction

operations in our prototype.

� Parsing the file systems of a reasonably used and modern

computer containing several volumes and a total of about

80,000 files takes approximately 5 min.

� Hashing the content of all files discovered on such a system

takes several hours.

� Extracting EXIF information from several thousand JPEG im-

ages takes several hours, mainly because of high BLOB

server overhead.

� Parsing Windows event log files takes a few seconds.

� Marking files in unallocated space based on header and

footer information takes several hours, mainly because

this work is carried out by a relatively slow Python script

that uses a regular expression.

5.3.3. Query processing
To give an indication of XIRAF’s query performance, we

provide indicative timings of the applications discussed in

Section 4. The timeline browser selects and sorts 500,000þ
date-objects on the fly in less than 5 s. Likewise, the CP detec-

tion programs require less than 5 s to matching over a 100,000

case file hashes against more than 100,000 database hashes.

The chosen database system performs very well at ‘join’-

queries like the join of two hash-sets. The photo search

application requires approximately three seconds to find

1000 images with EXIF information; further selections on

a subset of these images are instantaneous.

Except for the database schema itself, there have not been

any optimizations in terms of additional indices, and query-

caching. Nor have we made an attempt to define a number

of views on the data, like a timeline view. Another possibility

is to add a middle-tier that could lower the pressure on the da-

tabase server.

The main bottleneck in the architecture of XIRAF is the lack

of caching, both during feature extraction and querying: nei-

ther ‘simple’ queries for looking up a single node (as used in

browsing scenarios), nor requests to the virtual BLOB server

are being cached in the current implementation. Each time
(a part of) a file in a file system is requested, its path is looked

up in a database, which in turn is converted to a file-object,

which is then read.

When rendering large query results, XSLT processing can

become the bottleneck, but this can be avoided by disallowing

certain queries, and showing only the top-K results for each

query.

6. Conclusion and future work

This paper has given an overview of the XIRAF framework.

While it is too early to draw definitive conclusions, we feel

that the following key benefits of our approach have already

surfaced:

� The separation of feature extraction and analysis brings

benefits to both phases. XIRAF extracts features automati-

cally, which is essential when processing large input sets.

� The use of XML as a common, intermediate output format

for tools allows us to integrate the output of diverse, inde-

pendent tools that produce similar information. This allows

us to deal both with the heterogeneity present in the input

data (e.g., different browser types) and with the diversity

of forensic analysis tools. These benefits are demonstrated

quite clearly both by our timeline browser and by our child

pornography detection program.

� By storing extracted features in an XML database system, we

can analyze those features using a single, general-purpose,

powerful query language. In addition, we benefit automati-

cally from advances that are made in the area of XML data-

base systems (new query features, improved indexing

strategies, etc.)

Our early results with XIRAF are encouraging, but it is im-

portant to realize that the XIRAF prototype is just that: a proto-

type. Our experiences indicate clearly that significant

additional work is needed to turn XIRAF into a production sys-

tem for forensic analysis.

First, we are continuously expanding our tool set. An in-

creasing number of forensic tools produce XML output and

this is of obvious benefit to XIRAF. We are presently looking

into integrating the output of TULP2G (van den Bos and van

der Knijff, 2005), an open-source mobile phone analysis tool,

into XIRAF. In large-scale investigations, many mobile phones

can be seized. If information extracted from those phones is

converted to a uniform XML format, then XIRAF can be used

to issue queries that span all phones. In addition, information

extracted from mobile phones can be matched against infor-

mation from other sources, including disk images.

Second, we are looking into augmenting XIRAF with knowl-

edge bases that contain expert knowledge about specific types

of digital traces. Good examples are the locations of important

Windows registry keys, the locations of useful log files and

characteristic file-header information. Such knowledge can

be captured either in the form of static XML sub-databases

or in the form of a query database.

Third, we are working on adding full-text indexing of the

virtual BLOB to XIRAF and the corresponding query functions.

The current prototype implementations support only

d i g i t a l i n v e s t i g a t i o n 3 S (2 0 0 6) S 5 0 – S 5 8S58
structural XML queries. Adding full-text indexing will enable

content-and-structure (CAS) queries which will obviously in-

crease XIRAF’s query capabilities.

r e f e r e n c e s

Alink W. XIRAF – an XML information retrieval approach to digital
forensics. Master’s thesis, University of Twente, Enschede,
The Netherlands; October 2005.

Boag S, Chamberlin D, Fernández MF, Florescu D, Robie J, Sim _eon J,
XQuery Specification 1.0.

Boncz P, Grust T, van Keulen M, Manegold S, Rittinger J, Teubner J.
MonetDB/XQuery: a fast XQuery processor powered by a rela-
tional engine. In: Proceedings of ACM SIGMOD conference;
June 2006.

Buchholz F, Spafford EH. On the role of file system metadata in
digital forensics. Digital Investigation 2004;1:298–309.

Carrier B, Spafford EH. Getting physical with the digital inves-
tigation process. International Journal of Digital Evidence
2003;2(2).

Mohay G, Anderson A, Collie B, De Vel O, McKemmish R. Com-
puter and intrusion forensics. Artech House; 2003.

Sheldon A. The future of forensic computing. Digital Investigation
2005;2:31–5.

Thompson HS, McKelvie D. Hyperlink semantics for standoff
markup of read-only documents. In: Proceedings of SGML
Europe ’97, Barcelona, Spain; May 1997.

van den Bos J, van der Knijff R. TULP2G – an open source forensic
software framework for acquiring and decoding data stored in
electronic devices. International Journal of Digital Evidence
2005;4(2).

Peter Boncz received the MSc degree in Computer Science

from Vrije Universiteit in 1992 and the PhD degree in Com-

puter Science from the Universiteit van Amsterdam in 2002.

During his PhD research, he investigated database architec-

ture for query-intensive applications like OLAP and Data Min-

ing. This research led to the development of the MonetDB

database system (monetdb.cwi.nl), as well as a succesful

commercial CWI spin-off that sells CRM solutions based on

MonetDB. From 1999 on, he was full-time active at this
company (acquired by SPSS in 2004), where he was responsi-

ble for overall product architecture. In 2002, he obtained a fixed

appointment as senior researcher in the database architecture

research group of CWI, where his research interests include:

architecture-conscious database techniques, query optimiza-

tion, XML databases, and P2P systems.

Arjen P. de Vries received his PhD in Computer Science

from the University of Twente in 1999, on the integration of

content management in database systems. He is especially in-

terested in the design of database systems that support search

in multimedia digital libraries. He has worked on a variety of

research topics, including (multimedia) information retrieval,

database architecture, query processing, retrieval system

evaluation, and ambient intelligence. Arjen works as a post-

doctoral researcher at the CWI, the National Research Institute

for Mathematics and Computer Science in the Netherlands.

He is also an associate professor in the area of multimedia

data management at the Technical University of Delft.

Wouter Alink received the MSc degree in Computer Sci-

ence from the University of Twente in 2005. After finishing

his master’s thesis titled ’XIRAF’ at the Mathematical and

Computer Science Research Institute (CWI) in 2005, he joined

the Digital Technology Department of the Netherlands Foren-

sic Institute, where he is currently employed as a research fel-

low. His main research interests comprise XML database

architecture in general and multi-dimensional markup.

Raoul Bhoedjang received his PhD in Computer Science

from Vrije Universiteit, Amsterdam, in 2000, on high-speed

communication architectures for parallel-programming sys-

tems. He has held research positions at Vrije Universiteit

and Cornell University. Since 2001, he has worked as a forensic

scientist in the Digital Technology Department at the Nether-

lands Forensic Institute, where he heads the Open Systems

Group. The Open Systems Group focusses on forensic media

analysis, which involves data recovery and large-scale auto-

mated trace detection and analysis.

	XIRAF - XML-based indexing and querying for digital forensics
	Introduction
	Related work
	XIRAF
	The feature extraction manager
	The Tool Repository
	The storage subsystem
	Implementation

	Forensic applications
	Timeline browser
	Photo search
	Child pornography detection

	Discussion
	Flexible and powerful querying
	Wrapping tools
	Performance aspects
	Size of XML
	Extraction time
	Query processing

	Conclusion and future work
	References

